Perímetro, área y noción de volumen

Mtra. Johana Garcia
Ubicación curricular
Contenido Perímetro, área y noción de volumen
Proceso de Desarrollo de Aprendizaje (PDA) Distingue unidades lineales de cuadráticas, al calcular, con el apoyo de retículas cuadriculadas, el perímetro y área de diferentes polígonos para reconocer que existen: a) figuras diferentes con el mismo perímetro y diferente área; b) figuras diferentes con la misma área y diferente perímetro; c) figuras diferentes con el mismo perímetro y con la misma área.
Metodología Aprendizaje por indagación
Escenario Escuela
Ejes Articuladores
  • Pensamiento crítico

Plan de clase

Secuencia didáctica: Perímetro, área y noción de volumen


Sesión 1: Introducción al tema (45 minutos)


Objetivo: Introducir el tema de perímetro, área y noción de volumen a través de ejemplos y situaciones problemáticas.



  • Iniciar la clase presentando imágenes de diferentes objetos y figuras geométricas.

  • Preguntar a los alumnos si saben qué es el perímetro, el área y el volumen, y si pueden dar ejemplos de cómo se calculan.

  • Realizar una lluvia de ideas para recopilar las respuestas de los alumnos.

  • Explicar en qué consisten los conceptos de perímetro, área y volumen, y cómo se relacionan entre sí.

  • Mostrar ejemplos prácticos de cómo se calcula el perímetro y el área de diferentes figuras geométricas, usando retículas cuadriculadas.

  • Resolver un problema relacionado con el cálculo del perímetro y el área, de forma colaborativa con los alumnos.

  • Al finalizar la clase, asignar una tarea para que los alumnos investiguen y encuentren ejemplos de figuras con el mismo perímetro y diferente área, y viceversa.


Sesión 2: Figuras con el mismo perímetro y diferente área (45 minutos)


Objetivo: Analizar ejemplos de figuras con el mismo perímetro y diferente área, y discutir sus características.



  • Iniciar la clase recordando el concepto de perímetro y área, y preguntando si los alumnos encontraron ejemplos de figuras con el mismo perímetro y diferente área, como tarea.

  • Pedir a los alumnos que compartan sus ejemplos y que expliquen por qué tienen el mismo perímetro pero diferente área.

  • Mostrar ejemplos adicionales de figuras con estas características y discutir con los alumnos las razones detrás de estas diferencias.

  • Resolver problemas y ejercicios en los que los alumno