Compartida por: Anne Alberro
1 voto
8012 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 2do grado | Asignatura | Matemáticas | Bloque | V | Semana | 38a |
Tema | Análisis de los efectos al cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas que implican el uso de sistemas de dos ecuaciones lineales con dos incógnitas | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:05 | 1. El aprendizaje esperado para este tema es: “Lee y representa, gráfica y algebraicamente, relaciones lineales y cuadráticas”. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque V de tercer grado. 2. En esta sesión continúa el estudio del tema: “Análisis de los efectos al cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente”. 3.Solicitar que de manera individual resuelvan la actividad “Los tanques” de la sección “Descubre y construye” del libro de texto. |
|
250 251 | |||||
Desarrollo | 00:35 | 4.Supervisar a los alumnos y reiterar su disposición de orientarlos y apoyarlos en caso de dudas. Es posible que algunos alumnos presenten dificultad en el inciso 3 al momento de encontrar que la velocidad de llenado para el segundo tanque es de 4 litros por segundo. De ser necesario plantee la ecuación: mx+2=3(4)+2=18 para que la resuelvan y encuentren que m=4. 5. Para mayor claridad, en el inciso 5 pedir a los estudiantes que tracen en su cuaderno un plano cartesiano en el que rotulen los ejes y elijan intervalos adecuados en cada caso. Es posible que algunos alumnos presenten dificultad al momento de encontrar que el tanque 3 debe contener 16 litros al inicio, para estar lleno en 10 minutos. Para ello puede plantear la ecuación, 2(10)+b=36, y resolverla. 6. El MED propuesto contiene actividades en las que se pide cambiar los parámetros m y b de la función y= mx+b para analizar el comportamiento de las familias de rectas que se obtienen. Pedir a los alumnos que las resuelvan utilizando las tabletas. |
|
250 251 | |||||
Cierre | 00:10 | 7. En grupo, revisar las respuestas, procedimientos y gráficas. Hacer las gráficas en el pizarrón para analizarlas, discutirlas y llegar a acuerdos. |
|
250 251 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Analicen y comparen los efectos de cambiar el parámetro m de dos funciones y=mx+b, para que coincidan en cierto valor de x. • Analicen y comparen los efectos de cambiar el parámetro b de dos funciones y=mx+b, para que coincidan en cierto valor de x. |
Compartida por: Anne Alberro
0 votos
8013 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 2do grado | Asignatura | Matemáticas | Bloque | V | Semana | 38b |
Tema | Análisis de los efectos al cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente | ||||||||
Competencia a desarrollar | Resolver problemas de manera autónoma | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas que implican el uso de sistemas de dos ecuaciones lineales con dos incógnitas | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. El aprendizaje esperado para este tema es: “Lee y representa, gráfica y algebraicamente, relaciones lineales y cuadráticas”. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque V de tercer grado. 2. En esta sesión continúa el estudio del tema: “Análisis de los efectos al cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente”. 3. Antes de iniciar con la actividad de la sección “Pongámonos de acuerdo”, pedir a los alumnos que cambien números de los ejes del plano cartesiano (página 252) a: 0 1 y 2, para el eje de las abscisas y, 1, 2, 3 y 4, para el eje de las ordenadas. 4. Solicitar que de manera individual resuelvan los incisos 1 y 2. |
|
252 253 | |||||
Desarrollo | 00:25 | 5. Pedir que comparen sus respuestas y procedimientos con un compañero. Posteriormente, cada pareja deberá resolver el inciso 3 y 4. 6. Supervisar a los alumnos y reiterar su disposición de orientarlos y apoyarlos en caso de dudas. Recordar que lean la información contenida en la sección “Para tu apunte” de las páginas 252 y 253. 7. Pedir que trabajen en la sección “De vuelta al Explora”. |
|
252 253 | |||||
Cierre | 00:15 | 8. En grupo, revisar las respuestas y procedimientos de ambas actividades. Hacer un análisis comparativo entre las gráficas planteadas en la sección “Explora” y las ecuaciones correspondientes de la sección “De vuelta al Explora”. 9. El MED propuesto es un recurso para el profesor. Contiene diversas actividades de funciones lineales que podrá utilizar para evaluaciones, tareas o ejercicios en clase. |
![]() Ejercicios y problemas: funciones lineales
|
252 253 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Reconocen la pendiente de una función y=mx+b, algebraicamente y gráficamente. • Reconocen la ordenada al origen de una función y=mx+b, algebraicamente y gráficamente. |
Compartida por: Anne Alberro
0 votos
8014 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 2do grado | Asignatura | Matemáticas | Bloque | V | Semana | 38c |
Tema | Análisis de los efectos al cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas que implican el uso de sistemas de dos ecuaciones lineales con dos incógnitas | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. El aprendizaje esperado para este tema es: “Lee y representa, gráfica y algebraicamente, relaciones lineales y cuadráticas”. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque V de tercer grado. 2. En esta sesión se termina el estudio del tema: “Análisis de los efectos al cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente”. 3.Organizar al grupo en parejas y pedir que resuelvan los ejercicios de la sección “Practica” del libro de texto. |
|
253, 254 | |||||
Desarrollo | 00:25 | 4. Supervisar a los alumnos y reiterar su disposición de orientarlos y apoyarlos en caso de dudas. 5. El MED propuesto se sugiere en el inciso 4. Pedir a los estudiantes que lo utilicen para analizar cómo cambia la gráfica de una función al modificar sus parámetros. Para ello se pueden plantear preguntas del tipo: a) Encuentra la ecuación de una recta que pase por el (0,4) y sea paralela a la recta y=x. 6. Pedir a cada pareja que se reúna con otra para comparar los resultados y procedimientos. 7. En grupo, revisar resultado y procedimientos. Hacer énfasis en que dos rectas son perpendiculares si la pendiente de una es la inversa de la otra con signo contrario. Es decir, las rectas: son perpendiculares si: |
![]() Ecuación de la recta: pendiente y punto de corte
|
253, 254 | |||||
Cierre | 00:15 | 8. Pedir que resuelvan de manera individual los problemas propuestos en la sección “Evalúa tu avance”. 9. Solicitar a los estudiantes que resuelvan el ejercicio 7 de la sección “Evaluemos lo aprendido” de la página 260. 10. En grupo revisar las respuestas, y de ser necesario, resolver las actividades en el pizarrón. |
|
253, 254 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Reconocen la pendiente de una función y=mx+b, algebraicamente y gráficamente. • Reconocen la ordenada al origen de una función y=mx+b, algebraicamente y gráficamente. • Analicen los efectos de cambiar los parámetros de la función y = mx + b, en la gráfica correspondiente. |
Compartida por: Anne Alberro
0 votos
8015 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 2do grado | Asignatura | Matemáticas | Bloque | V | Semana | 38d |
Tema | Comparación de las gráficas de dos distribuciones (frecuencial y teórica) al realizar muchas veces un experimento aleatorio | ||||||||
Competencia a desarrollar | Comunicar información matemática | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Explica la relación que existe entre la probabilidad frecuencial y la probabilidad teórica | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. En esta sesión inicia el estudio del tema: “Comparación de las gráficas de dos distribuciones (frecuencial y teórica) al realizar muchas veces un experimento aleatorio”. 2. Pedir a los alumnos que lean la actividad “A lo loco” de la sección “Explora” y que diseñen un experimento que modele la situación. Dicho experimento se utilizará al final de la lección, en la sección “De vuelta al Explora”. Permita trabajar en la actividad un máximo de 10 minutos. |
|
255 256 | |||||
Desarrollo | 00:25 | 3. Solicitar a los alumnos que resuelvan la actividad “El dado cargado” de la sección “Descubre y construye”. 4. Para el inciso 2, recordar a los alumnos que lean la información contenida en las secciones “Para tu apunte”. 5. Para el inciso 3, pedir a los alumnos que lancen 50 veces el dado, que anoten en una tabla de distribución los resultados obtenidos y, a partir de ella, elaboren la gráfica de distribución. De ser necesario recordar qué es la frecuencia absoluta y la frecuencia relativa de un suceso. 6. Supervisar a los alumnos y reiterar su disposición de orientarlos y apoyarlos en caso de dudas. |
|
255 256 | |||||
Cierre | 00:15 | 7. En grupo, revisar las respuestas. Analizar las similitudes y diferencias entre las tres gráficas de distribución de frecuencia de la actividad. 8. El MED propuesto tiene cuatro actividades interactivas de lectura y análisis de gráficas de barras y polígonos de frecuencia. Pedir a los alumnos que accedan a él utilizando sus tabletas. Las soluciones que contiene, le permitirán conocer sus errores. |
![]() Interactivo: Gráficas de barras y polígonos de frecuencia
|
255 256 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Leen y analizan información a partir de gráficas de distribución. • Elaboran gráficas de distribución teórica. • Elaboran gráficas de distribución frecuencial. |
Compartida por: Anne Alberro
0 votos
8016 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 2do grado | Asignatura | Matemáticas | Bloque | V | Semana | 38e |
Tema | Comparación de las gráficas de dos distribuciones (frecuencial y teórica) al realizar muchas veces un experimento aleatorio | ||||||||
Competencia a desarrollar | Validar procedimientos y resultados | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Explica la relación que existe entre la probabilidad frecuencial y la probabilidad teórica | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:05 | 1. En esta sesión continúa el estudio del tema: “Comparación de las gráficas de dos distribuciones (frecuencial y teórica) al realizar muchas veces un experimento aleatorio”. 2. El MED propuesto es un video en el que se explica la relación entre la probabilidad teórica y la probabilidad frecuencial. Solicitar a los alumnos que lo vean, utilizando las tabletas. 3. Dividir al grupo en equipos de tres personas y pedir que resuelvan la actividad “Águila o sol” del libro de texto. |
![]() Relación entre probabilidad teórica y frecuencial
|
256 257 | |||||
Desarrollo | 00:30 | 3. Para el inciso 1, cada alumno deberá lanzar 20 veces su moneda y anotar los resultados en una tabla de frecuencias. Pedir que, en una hoja tamaño carta, elaboren una gráfica de frecuencias con los 60 lanzamientos. La grafica de distribución teórica, también deberá elaborarse en una hoja tamaño carta. 4. Para terminar el ejercicio, pedir que enlisten las diferencias y similitudes entre ambas gráficas. 5. Pedir a cada equipo que resuelva la actividad del libro “Demuestra con los dados”. El MED propuesto es un simulador de lanzamiento de dado. 6. Para el inciso 3, cada equipo elaborará, en una hoja tamaño carta, una tabla de frecuencias semejante a la de la página 256. Para llevar a cabo el experimento, cada estudiante lanzará 20 veces los dados y anotará los resultados en dicha tabla. 7. Para que el análisis y comparación entre las gráficas de distribución teórica y frecuencial sea más sencillo, se sugiere pedir a los alumnos que elaboren cada gráfica en una hoja de tamaño carta. 8. Solicitar a cada equipo que se reúna con otro para comparar los resultados y gráficas de ambas actividades, y llegar a conclusiones. |
![]() Simulador de lanzamiento de dados
|
256 257 | |||||
Cierre | 00:15 | 9. Para cada actividad, pedir a un equipo que muestre al resto del grupo las dos gráficas obtenidas y explique las diferencias y similitudes encontradas. |
|
256 257 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Elaboren tablas y gráficas de distribución teórica. • Elaboren tablas y gráficas de distribución frecuencial. • Comparen gráficas de distribución teórica y distribución frecuencial. |