Compartida por: Red Magisterial
1 voto
4892 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 1er grado | Asignatura | Matemáticas | Bloque | V | Semana | 34a |
Tema | Uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas aditivos que implican el uso de números enteros, fraccionarios o decimales positivos y negativos | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:05 | 1. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque I de segundo grado. 2. En esta sesión se concluye con el uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas. 3. La práctica hace al maestro. Por ello es necesario que los educandos resuelvan diversos problemas y ejercicios operativos relacionados con el uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas. |
![]() Expresiones matemáticas. Primer grado, sesión 34 e
|
Acuerdo 592 Págs.536 | |||||
Desarrollo | 00:30 | 4. Plantear una serie de problemas y ejercicios. Por ejemplo: a) El cuerpo humano tiene 5 litros de sangre, de los cuales el 40% son glóbulos rojos. Si cada glóbulo rojo tiene un volumen aproximado de 9×〖10〗^(-15) litros, ¿cuántos glóbulos rojos hay en el cuerpo humano?. El MED, “¿Calculando los glóbulos rojos en el cuerpo usando la notación científica?” es un video en el que se resuelve el problema de los glóbulos rojos. De ser necesario, pedir a los alumnos que lo vean utilizando sus tabletas. b) Se calcula que en la Vía Láctea hay aproximadamente 1.2 × 〖10〗^11 estrellas. ¿Cuántos años le tomaría a una persona contar las estrellas si cuenta una por segundo? c) La masa de un electrón es de 9×〖10〗^(-31) kg y la masa de un protón y de un electrón es de 1.67×〖10〗^(-27) kg. Si un átomo de azufre tiene 16 electrones, 16 protones y 16 neutrones, ¿cuál es su masa? d) El segundo MED propuesto contiene cinco ejercicios de multiplicación y división de números escritos en notación científica. Utilizar las tabletas para resolverlos. 5. Supervisar a los alumnos y reiterar su disposición de orientarlos y apoyarlos en caso de dudas. |
![]() Multiplicar y dividir con notación científica ![]() ¿Calculando los glóbulos rojos en el cuerpo usando la notación científica?
|
Acuerdo 592 Págs.536 | |||||
Cierre | 00:15 | 6. Pedir que varios voluntarios pasen al pizarrón a resolver los ejercicios y problemas planteados. |
|
Acuerdo 592 Págs.536 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Expresen números muy grandes y muy pequeños utilizando notación científica. • Efectúen sumas, restas, multiplicaciones y divisiones con números escritos en notación científica. • Resuelven problemas usando notación científica. |
Compartida por: Red Magisterial
1 voto
4888 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 1er grado | Asignatura | Matemáticas | Bloque | V | Semana | 34a |
Tema | Uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas aditivos que implican el uso de números enteros, fraccionarios o decimales positivos y negativos | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque I de segundo grado. 2. En esta sesión se inicia el uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas 3. Pedir a los alumnos que, de manera individual, resuelvan una actividad relacionada con las potencias de 10 con exponente positivo. Por ejemplo: Relaciona las tres columnas: Nota: Para visualizar la imagen que complementa este momento de la secuencia, es necesario revisar el Recurso MED elaborado específicamente para esta planeación: GRÁFICO Matemáticas 1-planea-34a |
![]() Expresiones matemáticas. Primer grado, sesión 34 a ![]() GRÁFICO Matemáticas 1-planea-34a
|
Acuerdo 592 Págs.536 | |||||
Desarrollo | 00:30 | 4. Revisar en grupo las respuestas y procedimientos de la actividad de inicio. Hacer hincapié en que en las potencias de 10 con exponente positivo, el exponente coincide con el número de ceros del número. Para ver los números y sus exponentes, consultar: GRÁFICO Matemáticas 1-planea-34a 5. Explicar cómo se escriben números muy grandes en notación científica, es decir, explicar que se escriben como a×〖10〗^n donde a es un número entre 1 y 10 y n es un entero positivo. Por ejemplo: a) 123 000 000 000=1.23×〖10〗^11 b) 50 000 000 000=5×〖10〗^10 6. Plantear actividades donde el alumno escriba números grandes utilizando notación científica. Por ejemplo: a) Un mol= 602 200 000 000 000 000 000 000 b) Masa de la Tierra en kilogramos: 5 973 600 000 000 000 000 000 000 c) Un año luz es aproximadamente 9 470 000 000 000 kilómetros. 7. En grupo revisar las respuestas. Hacer énfasis en que a partir de órdenes de magnitud muy grandes, escribir, leer y operar con dichos números resulta poco práctico, de ahí la necesidad de la notación científica. Utilizar las tabletas para investigar qué es un mol, qué es la masa de un objeto y qué es un año luz. |
|
Acuerdo 592 Págs.536 | |||||
Cierre | 00:10 | 8. El MED propuesto contiene información diversa sobre los planetas y su distancia al Sol. Pedir a los alumnos que, de manera individual, construyan una tabla con los datos del diámetro de cada planeta y su distancia al Sol expresados en notación científica.Pedir a varios voluntarios que den sus resultados. En grupo llegar a acuerdos. |
![]() Datos de los planetas
|
Acuerdo 592 Págs.536 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Expresen números grandes utilizando potencias de 10 con exponentes positivos. • Conocen la forma en que se escriben números muy grandes utilizando la notación científica. • Utilizan la notación científica para escribir números muy grandes. |
Compartida por: Red Magisterial
1 voto
4889 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 1er grado | Asignatura | Matemáticas | Bloque | V | Semana | 34a |
Tema | Uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas aditivos que implican el uso de números enteros, fraccionarios o decimales positivos y negativos | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque I de segundo grado. 2. En esta sesión se inicia el uso de la notación científica para realizar cálculos en los que intervienen cantidades muy pequeñas. 3. Pedir a los alumnos que, de manera individual, resuelvan una actividad relacionada con las potencias de 10 con exponente positivo. Por ejemplo: Indica con una F si la igualdad es falsa y con una V si es verdadera: 1×〖10〗^(-3)=0.01 2×〖10〗^(-5)=0.00002 3.4×〖10〗^(-1)=340 23.5×〖10〗^(-7)=0.00000235 1×〖10〗^(-4)=1/10000 |
![]() Expresiones matemáticas. Primer grado, sesión 34 b
|
Acuerdo 592 Págs.536 | |||||
Desarrollo | 00:30 | 4. Revisar en grupo las respuestas y procedimientos de la actividad de inicio. Hacer hincapié en que en las potencias de 10 con exponente negativo, el exponente coincide con las cifras decimales del número. 5. Explicar cómo se escriben números muy chicos en notación científica, es decir, explicar que se escriben como a×〖10〗^n donde a es un número entre 1 y 10 y n es un entero negativo. Por ejemplo: a) 0.0000728=7.28×〖10〗^(-5) b) 0.00000000001=1×〖10〗^(-11) 6. Plantear actividades donde el alumno escriba números pequeños utilizando notación científica. Por ejemplo: a) La masa en gramos aproximada de un protón es, 0.00000000000000000000000000167 b) La masa en gramos aproximada de un átomo de helio es, 0.000000000000000000000006.6 c) Un micrómetro (μm) es la millonésima parte de un metro. 7. En grupo revisar las respuestas. Utilizar las tabletas para buscar en la red tablas de submúltiplos del metro y conocer sus prefijos: nano, pico, femto, etcétera. |
|
Acuerdo 592 Págs.536 | |||||
Cierre | 00:10 | 8. El MED propuesto es un video que explica qué es la nanociencia y la nanotecnología. Utilizar las tabletas para verlo. En grupo comentar algunas de las líneas de investigación actuales. |
![]() Nanociencia y nanotecnología en la UNAM
|
Acuerdo 592 Págs.536 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Expresen números pequeños utilizando potencias de 10 con exponentes negativos. • Conocen la forma en que se escriben números muy pequeños utilizando la notación científica. • Utilicen la notación científica para escribir números muy pequeños. |
Compartida por: Red Magisterial
1 voto
4891 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 1er grado | Asignatura | Matemáticas | Bloque | V | Semana | 34a |
Tema | Uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas aditivos que implican el uso de números enteros, fraccionarios o decimales positivos y negativos | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque I de segundo grado. 2. En esta sesión se continúa con el uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas. 3. Plantear actividades donde el alumno deba multiplicar o dividir números escritos en notación científica. Por ejemplo: a) La masa del Sol es aproximadamente 330 000 veces la masa de la Tierra. Si la masa de la Tierra es aproximadamente de 6x〖10〗^24 kilogramos, ¿cuál es la masa aproximada del Sol? b) Si la velocidad de la luz es 3×〖10〗^8 m/seg, ¿qué tiempo tardará en recorrer 15 km? |
![]() Expresiones matemáticas. Primer grado, sesión 34 d
|
Acuerdo 592 Págs.536 | |||||
Desarrollo | 00:30 | 4. Revisar en grupo las respuestas y llegar a acuerdos de cómo se multiplican o dividen números que están escritos en notación científica. Hacer hincapié en que para multiplicar o dividir números escritos en notación científica no se requiere que tengan el mismo orden de magnitud. 5. Dividir al grupo en pareja y plantear ejercicios de multiplicación y división de números en notación científica. Por ejemplo: c) (7.81×〖10〗^11 )×(2.5×〖10〗^11 )= d) (1.3×〖10〗^(-8) )×(0.5×〖10〗^(-6) )= e) (6×〖10〗^6 )÷(2.2×〖10〗^6 )= d) (2.5×〖10〗^(-6) )÷(2×〖10〗^(-5) )= 6. Pedir a cada pareja que compare sus resultados y procedimientos con otra. 7. El MED propuesto es un video donde se explica, a través de ejercicios concretos, como multiplicar o dividir números en notación científica. Utilizar las tabletas para verlo. |
![]() Multiplicación y división en notación científica
|
Acuerdo 592 Págs.536 | |||||
Cierre | 00:10 | 8. Organizar una plenaria para revisar resultados y procedimientos. 9. Solicitar a los estudiantes que escriban en su cuaderno, utilizando sus propias palabras, los procedimientos para multiplicar y para dividir números que están escritos en notación científica. |
|
Acuerdo 592 Págs.536 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Multipliquen números muy grandes o muy pequeños que están escritos en notación científica. • Dividen números muy grandes o muy pequeños que están escritos en notación científica. |
Compartida por: Red Magisterial
1 voto
4890 | Planeación Interactiva de educación básica | ||||||||
Nivel escolar | Secundaria | Grado escolar | 1er grado | Asignatura | Matemáticas | Bloque | V | Semana | 34a |
Tema | Uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas | ||||||||
Competencia a desarrollar | Manejar técnicas eficientemente | Duración | 0 horas, 50 minutos | ||||||
Aprendizaje esperado | Resuelve problemas aditivos que implican el uso de números enteros, fraccionarios o decimales positivos y negativos | ||||||||
Etapas | Tiempo sugerido | Secuencia didáctica | MED | Página libro de texto | |||||
Inicio | 00:10 | 1. El aprendizaje esperado no se cubre en su totalidad en esta sesión. Se logra hasta el Bloque I de segundo grado. 2. En esta sesión se continúa con el uso de la notación científica para realizar cálculos en los que intervienen cantidades muy grandes o muy pequeñas. 3. Plantear actividades donde el alumno deba sumar o restar números escritos en notación científica que tengan el mismo orden de magnitud. Por ejemplo: a) La tabla muestra el número aproximado de habitantes de las tres entidades federativas más pobladas de la República Mexicana, según el Censo 2010. Nota: Para visualizar la imagen que complementa este momento de la secuencia, es necesario revisar el Recurso MED elaborado específicamente para esta planeación: GRÁFICO Matemáticas 1-planea-34c Escribe en notación científica el número de habitantes que había en total en el año 2010 en los tres estados. |
![]() GRÁFICO Matemáticas 1-planea-34c
|
Acuerdo 592 Págs.536 | |||||
Desarrollo | 00:30 | 4. Revisar en grupo las respuestas y llegar a acuerdos de cómo se suman o restan números que están escritos en notación científica y que tienen el mismo orden de magnitud. 5. Explicar al grupo cómo se suman o se restan números que están escritos en notación científica y que tienen orden de magnitud distinta. Es importante que el alumno comprenda que antes de sumar o restar es necesario convertir, multiplicando o dividiendo alguno de los coeficientes por potencias de 10 apropiadas, los números que tengan el mismo orden de magnitud. Por ejemplo: 1.2×+2.3×=1.2×+0.023×=1.223×. 6. Dividir al grupo en parejas y solicitar que resuelvan ejercicios del tipo: a) 2.1×+9.6×= b) 5.3×-0.1×= c) 5.1×-21.1×= d) 3.3×+12.34×= 7. Pedir a cada pareja que compare sus resultados y procedimientos con otra. 8. El MED propuesto es un video donde se explica, a través de ejercicios concretos, como sumar o restar números en notación científica. Utilizar las tabletas para verlo. |
![]() Suma y resta en notación científica.
|
Acuerdo 592 Págs.536 | |||||
Cierre | 00:10 | 9. Organizar una plenaria para revisar resultados y procedimientos. 10. Solicitar a los estudiantes que escriban en su cuaderno, utilizando sus propias palabras, un procedimiento para sumar o restar números que están escritos en notación científica y que tienen el mismo orden de magnitud, y otro para sumar o restar números que están escritos en notación científica y que tienen distinto orden de magnitud. |
|
Acuerdo 592 Págs.536 | |||||
Evaluación | Evalúe a los estudiantes considerando lo siguiente: • Sumen y resten números que están escritos en notación científica y que tienen el mismo orden de magnitud. • Sumen y resten números que están escritos en notación científica y que tienen distinto orden de magnitud. |